Nanobiotechnology II

Edited by
Chad A. Mirkin and
Christof M. Niemeyer
1807–2007 Knowledge for Generations

Each generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

William J. Pesce
President and Chief Executive Officer

Peter Booth Wiley
Chairman of the Board
Contents

Preface XV

List of Contributors XXI

I Self-Assembly and Nanoparticles: Novel Principles 1

1 Self-Assembled Artificial Transmembrane Ion Channels 3
Mary S. Gin, Emily G. Schmidt, and Pinaki Talukdar

1.1 Overview 3
1.1.1 Non-Gated Channels 3
1.1.1.1 Aggregates 4
1.1.1.2 Half-Channel Dimers 5
1.1.1.3 Monomolecular Channels 5
1.1.2 Gated Channels 6
1.1.2.1 Light-Gated Channels 7
1.1.2.2 Voltage-Gated Channels 7
1.1.2.3 Ligand-Gated Channels 9
1.2 Methods 10
1.2.1 Planar Bilayers 10
1.2.2 Vesicles 11
1.2.2.1 23Na NMR 11
1.2.2.2 pH-Stat 11
1.2.2.3 Fluorescence 12
1.2.2.4 Ion-Selective Electrodes 12
1.3 Outlook 12
References 12

2 Self-Assembling Nanostructures from Coiled-Coil Peptides 17
Maxim G. Ryadnov and Derek N. Woolfson

2.1 Background and Overview 17
2.1.1 Introduction: Peptides in Self-Assembly 17
2.1.2 Coiled-Coil Peptides as Building Blocks in Supramolecular Design 18
2.1.3 Coiled-Coil Design in General 20
2.2 Methods and Examples

2.2.1 Ternary Coiled-Coil Assemblies and Nanoscale-Linker Systems 20

2.2.2 Fibers Assembled Using Linear Peptides 22

2.2.3 Fibers Assembled Using Protein Fragments and Nonlinear Peptide Building Blocks 26

2.2.4 Summary: Pros and Cons of Peptide-Based Assembly of Nanofibers 27

2.2.5 Assembling More-Complex Matrices Using Peptide Assemblies as Linker Struts 30

2.2.5.1 Programmed Matrices Assembled Exclusively from Coiled-Coil Building Blocks 30

2.2.5.2 Synthetic Polymer-Coiled-Coil Hybrids 31

2.2.6 Key Techniques 33

2.3 Conclusions and Perspectives 34

References 35

3 Synthesis and Assembly of Nanoparticles and Nanostructures Using Bio-Derived Templates 39

Erik Dujardin and Stephen Mann

3.1 Introduction: Elegant Complexity 39

3.2 Polysaccharides, Synthetic Peptides, and DNA 40

3.3 Proteins 44

3.4 Viruses 48

3.5 Microorganisms 54

3.6 Outlook 56

Acknowledgments 58

References 58

4 Proteins and Nanoparticles: Covalent and Noncovalent Conjugates 65

Rochelle R. Arvizo, Mrinmoy De, and Vincent M. Rotello

4.1 Overview 65

4.1.1 Covalent Protein-Nanoparticle Conjugates 66

4.1.2 Noncovalent Protein–NP Conjugation 69

4.2 Methods 72

4.2.1 General Methods for Noncovalent Protein–NP Conjugation 72

4.2.2 General Methods for Covalent Protein–NP Conjugation 74

4.3 Outlook 75

References 75

5 Self-Assembling DNA Nanostructures for Patterned Molecular Assembly 79

Thomas H. LaBean, Kurt V. Gothelf, and John H. Reif

Abstract 79

5.1 Introduction 79

5.2 Overview of DNA Nanostructures 80
5.3 Three-Dimensional (3-D) DNA Nanostructures 84
5.4 Programmed Patterning of DNA Nanostructures 84
5.5 DNA-Programmed Assembly of Biomolecules 87
5.6 DNA-Programmed Assembly of Materials 89
5.7 Laboratory Methods 91
5.7.1 Annealing for DNA Assembly 92
5.7.2 AFM Imaging 93
5.8 Conclusions 93
Acknowledgments 94
References 94

6 Biocatalytic Growth of Nanoparticles for Sensors and Circuitry 99
Ronan Baron, Bilha Willner, and Itamar Willner
6.1 Overview 99
6.1.1 Enzyme-Stimulated Synthesis of Metal Nanoparticles 100
6.1.2 Enzyme-Stimulated Synthesis of Cupric Ferrocyanide Nanoparticles 107
6.1.3 Cofactor-Induced Synthesis of Metallic NPs 107
6.1.4 Enzyme–Metal NP Hybrid Systems as “Inks” for the Synthesis of Metallic Nanowires 113
6.2 Methods 115
6.2.1 Physical Tools to Characterize the Growth of Nanoparticles and Nanowires 115
6.2.2 General Procedure for Monitoring the Biocatalytic Enlargement of Metal NPs in Solutions 116
6.2.3 Modification of Surfaces with Metal NPs and their Biocatalytic Growth for Sensing 116
6.2.4 Modification of Enzymes with NPs and their Use as Biocatalytic Templates for Metallic Nanocircuitry 117
6.3 Outlook 117
References 118

II Nanostructures for Analytics 123

7 Nanoparticles for Electrochemical Bioassays 125
Joseph Wang
7.1 Overview 125
7.1.1 Particle-Based Bioassays 125
7.1.2 Electrochemical Bioaffinity Assays 125
7.1.3 NP-Based Electrochemical Bioaffinity Assays 126
7.1.3.1 Gold and Silver Metal Tags for Electrochemical Detection of DNA and Proteins 126
7.1.3.2 NP-Induced Conductivity Detection 129
7.1.3.3 Inorganic Nanocrystal Tags: Towards Electrical Coding 130
7.1.3.4 Use of Magnetic Beads 133
7.1.3.5 Ultrasensitive Particle-Based Assays Based on Multiple Amplification Schemes 134
7.2 Methods 136
7.3 Outlook 137
Acknowledgments 138
References 138

8 Luminescent Semiconductor Quantum Dots in Biology 141
Thomas Pons, Aaron R. Clapp, Igor L. Medintz, and Hedi Mattoussi
8.1 Overview 141
8.1.1 QD Bioconjugates in Cell and Tissue Imaging 142
8.1.2 Quantum Dots in Immuno- and FRET-Based Assays 146
8.2 Methods 150
8.2.1 Synthesis, Characterization, and Capping Strategies 150
8.2.2 Water-Solubilization Strategies 151
8.2.3 Conjugation Strategies 151
8.3 Future Outlook 152
Acknowledgments 153
References 153

9 Nanoscale Localized Surface Plasmon Resonance Biosensors 159
Katherine A. Willets, W. Paige Hall, Leif J. Sherry, Xiaoyu Zhang, Jing Zhao, and Richard P. Van Duyne
9.1 Overview 159
9.2 Methods 162
9.2.1 Nanofabrication of Materials for LSPR Spectroscopy and Sensing 162
9.2.1.1 Film Over Nanowells 163
9.2.1.2 Solution-Phase NSL-Fabricated Nanotriangles 164
9.2.1.3 Silver Nanocubes 166
9.2.2 Biosensing 167
9.3 Outlook 168
Acknowledgments 169
References 169

10 Cantilever Array Sensors for Bioanalysis and Diagnostics 175
Hans Peter Lang, Martin Hegner, and Christoph Gerber
10.1 Overview 175
10.1.1 Cantilevers as Sensors 176
10.1.2 Measurement Principle 177
10.1.3 Cantilevers: Application Fields 179
10.2 Methods 180
10.2.1 Measurement Modes 180
10.2.2 Cantilever Functionalization 181
10.2.3 Experimental Procedure 184
10.3 Outlook 186
10.3.1 Recent Literature 186
10.3.2 Challenges 188
Acknowledgments 189
References 190

11 Shear-Force-Controlled Scanning Ion Conductance Microscopy 197
Tilman E. Schäffer, Boris Anczykowski, Matthias Böcker, and Harald Fuchs
11.1 Overview 197
11.2 Methods 202
11.2.1 Shear-Force Detection 202
11.2.2 Ion Current Measurement 204
11.2.3 Shear-Force-Controlled Imaging 205
11.3 Outlook 207
Acknowledgments 209
References 209

12 Label-Free Nanowire and Nanotube Biomolecular Sensors for In-Vitro Diagnosis of Cancer and other Diseases 213
James R. Heath
12.1 Overview 213
12.2 Background 213
12.3 Methods and Current State of the Art 216
12.3.1 Mechanisms of Sensing 216
12.3.2 The Role of the Sensing Environment 218
12.3.3 Nanosensor-Measured Antigen–Analyte On/Off Binding Rates 219
12.3.4 The Nanosensor/Microfluidic Environment 222
12.3.5 Nanosensor Fabrication 223
12.3.6 Biofunctionalizing NW and NT Nanosensors 226
12.4 Outlook 227
Acknowledgments 227
References 228

13 Bionanoarrays 233
Rafael A. Vega, Khalid Salaita, Joseph J. Kakkassery, and Chad A. Mirkin
13.1 Overview 233
13.2 Methods 234
13.2.1 Atomic Force Microscope-Based Methods 234
13.2.2 Nanopipet Deposition 237
13.2.3 Beam-Based Methods 238
13.2.4 Contact Printing 240
13.2.5 Assembly-Based Patterning 241
13.3 Protein Nanoarrays 242
13.3.1 Strategies for Immobilizing Proteins on Nanopatterns 243
13.3.2 Bio-Analytical Applications 244
13.3.3 Dynamic and Motile Nanoarrays 246
15.2.2 Top-Down Approaches for the Fabrication of Polymeric Nanoparticles 291
15.2.2.1 Microfluidics 291
15.2.2.2 Photolithography 292
15.2.2.3 Imprint Lithography 294
15.2.2.4 IRINT 295
15.3 Outlook 297
References 299

16 Poly(amideamine) Dendrimer-Based Multifunctional Nanoparticles 305
16.1 Overview 305
16.1.1 PAMAM Dendrimers: Structure and Biological Properties 306
16.1.2 PAMAM Dendrimers as a Vehicle for Molecular Delivery into Cells 308
16.1.2.1 PAMAM Dendrimers as Encapsulation Complexes 308
16.1.2.2 Multifunctional Covalent PAMAM Dendrimer Conjugates 308
16.1.2.3 PAMAM Dendrimers as MRI Contrast Agents 312
16.1.2.4 Application of Multifunctional Clusters of PAMAM Dendrimer 312
16.2 Methods 313
16.2.1 Synthesis and Characterization of PAMAM Dendrimers 313
16.2.2 PAMAM Dendrimer: Determination of Physical Parameters 315
16.2.3 Quantification of Fluorescence of Targeted PAMAM Conjugates 315
16.3 Outlook 316
References 316

17 Nanoparticle Contrast Agents for Molecular Magnetic Resonance Imaging 321
Young-wook Jun, Jae-Hyun Lee, and Jinwoo Cheon
17.1 Introduction 321
17.2 NP-Assisted MRI 322
17.2.1 Magnetic NP Contrast Agents 323
17.2.1.1 Silica- or Dextran-Coated Iron Oxide Contrast Agents 325
17.2.1.2 Magnetoferritin 327
17.2.1.3 Magnetodendrimer and Magnetoliposomes 327
17.2.1.4 Non-Hydrolytically Synthesized High-Quality Iron Oxide NPs: A New Type of Contrast Agent 328
17.2.2 Iron Oxide NPs in Molecular MR Imaging 331
17.2.2.1 Infarction and Inflammation 332
17.2.2.2 Angiogenesis 333
17.2.2.3 Apoptosis 334
17.2.2.4 Gene Expression 335
17.2.2.5 Cancer Imaging 337
17.3 Outlook 340
21 Biologically Inspired Hybrid Nanodevices 401
David Wendell, Eric Dy, Jordan Patti, and Carlo D. Montemagno

21.1 Introduction 401
21.2 An Overview 402
21.2.1 A Look in the Literature 402
21.2.2 Membrane Proteins and their Native Condition 403
21.3 The Protein Toolbox 404
21.3.1 F₀F₁-ATPase and Bacteriorhodopsin 404
21.3.2 Ion Channels and Connexin 406
21.4 Harvesting Energy 48
21.5 Methods 409
21.5.1 Muscle Power 409
21.5.2 ATPase and BR Devices 411
21.5.3 Excitable Vesicles 414
21.6 Outlook 414
Acknowledgments 416
References 416

Index 419
The broad field of nanotechnology has undergone explosive growth and development over the past five years. In fact, no field in the history of science has experienced more interest or larger government investment. Indeed, by the end of 2006, the worldwide government and private sector investment in nanotechnology is projected to be approximately $9 billion. The enthusiasm researchers have for this field is fueled by: 1) the desire to determine the unusual chemical and physical properties of nanostructures, which are often quite different from the bulk materials from which they derive, and 2) the potential to use such properties in the development of novel and useful devices and materials that can impact and, perhaps even transform, many aspects of modern life.

The subfield known as Nanobiotechnology holds some of the greatest promise. This highly interdisciplinary field, which draws upon contributions from chemistry, physics, biology, materials science, medicine and many forms of engineering, focuses on several important areas of research. Some of these include: 1) the development of methods for building nanostructures and nanostructured materials out of biological or biologically inspired components such as oligonucleotides, proteins, viruses, and cells; these structures are intended for both biological and abiological uses, 2) the utilization of synthetic nanomaterials to regulate and monitor important biological processes, and 3) the development of synthetic and soft matter compatible surface analytical tools for building nanostructures important in both biology and medicine. Advances in this field offer novel and potentially useful approaches to building functional structures including computational tools, energy generation, conversion and storage materials, powerful optical devices, and new detection and therapeutic modalities. Indeed, advances in Nanobiotechnology have the potential to revolutionize the way the medical community approaches modern disease management.

Although the field is still embryonic, major strides have been made. Powerful new forms of signal amplification have been realized for both DNA and protein based detection systems. Indeed, the first commercial molecular diagnostic systems that rely upon nanoparticle probes are expected to be available in 2007. Biological labels based upon nanocrystals are commercially available and used routinely for research purposes in laboratories worldwide. Many new nanomaterials have boosted the efficacy and viability of several powerful pharmaceutical agents.
Nanofabrication tools that allow one to routinely build oligonucleotide, protein, and other biorelevant nanostructures on surfaces with extraordinary precision have evolved to the point of commercialization and widespread use. These examples represent only a small part of this expansive field but are realized potential and serve as motivators for future developments within it.

In 2004, we edited the book Nanobiotechnology: Concepts, Applications and Perspectives which was intended to provide a systematic and comprehensive framework of specific research topics in Nanobiotechnology. Due to the great success of this first volume, Nanobiotechnology II – More Concepts and Applications now follows the notion of its precursor by combining contributions from bioorganic and bioinorganic chemistry, molecular and cell biology, materials science and bioanalytics to cover the entire scope of current and future developments in Nanobiotechnology. The collection of articles in this volume again emphasizes the high degree of interdisciplinarity necessarily implemented in the joint-venture of biotechnology and nano-sciences. During the selection of potential chapters for this volume we took into account, on the one hand, the progress by which particular areas had developed in the past three years. Because this occurred primarily in two areas, namely the development of nanoparticle science and applications as well as in the refinement of scanning probe microscopy related methods, the majority of the chapters are concerned with these issues. On the other hand, additional topics not yet covered in the first volume were identified, thus leading to contributions from the area of small molecule- and peptide-based self-assembly (chapters 1 and 2), the use of nanomaterials for medicinal applications (section 3), and the utilization of biomolecular machinery to create hybrid devices with mechanical functionalities (section 4).

The current volume is divided into four main sections. Section I (Chapters 1–6) concerns novel principles in self-assembly and nanoparticle-based systems. In Chapter 1, Mary S. Gin, Emily G. Schmidt, and Pinaki Talukdar provide an overview of artificial transmembrane channels, attainable by organic synthesis and the assembly of small molecule building blocks. This synthetic approach to ion channels, initially aimed at elucidating the minimal structural requirements for ion flow across a membrane, nowadays is focusing on the development of synthetic channels that are gated, thus providing a means to control whether the channels are open or closed. Such artificial signal transduction could lead to novel sensing and therapeutic applications. The self-assembly of small molecules also represents the underlying theme of Chapter 2, written by Maxim G. Ryadnov and Derek N. Woolfson. They summarize current efforts to build nanoscopic and mesoscopic supramolecular structures from short oligopeptides comprising the α-helical coiled-coil folding motif. Examples of nanostructures and materials made from such coiled-coil building blocks include programmable nanoscale linkers, molecular switches, and fibrous and gel-forming materials which may be useful for the production of peptide-polymer hybrids combining the advantages of both natural and synthetic polymers. These structures also could lead to the design of peptide-based switches that may render hybrid networks more controllable and increase sensitivity and responses to local environments.
The notion of the first two chapters is connected with the area of nanoparticle research in chapter 3, where Erik Dujardin and Stephen Mann illustrate how unraveling the specific interactions between bio-derived templates and inorganic materials not only yields a better understanding of natural hybrid materials but also inspires new methods for developing the potential of biological molecules, superstructures and organisms as self-assembling agents for materials fabrication. In particular, the chapter describes the use of various types of bio-related molecules, ranging from biopolymers, peptides, oligonucleotides to the complex biological architecture of proteins, viruses and even living organisms, for the synthesis and assembly of organized nanoparticle-based structures and materials.

Two additional chapters deal with the conversed approach, that is, the modification of nanoparticles with biomolecules to add functionality to the inorganic components. In Chapter 4, Rochelle R. Arvizo, Mrinmoy De, and Vincent M. Rotello describe recent developments involving protein functionalized nanoparticles. These conjugates, which are produced either by covalent or non-covalent coupling strategies, hold potential for the creation of novel materials and devices in the biosensing and catalysis fields. The combination of proteins and nanoparticles also opens up novel approaches to the synthesis of nanoparticles, as summarized in Chapter 6, written by Ronan Baron, Bilha Willner, and Itamar Willner. They describe the application of biocatalysts, enzymes, such as oxidases and hydrolases, as active components for the synthesis and enlargement of nanoparticles and for biocatalytic growth of nanoparticles, mediated by specific enzyme reactions. This concept has strong implications in biosensor design, and the nanoparticle-enzyme hybrid systems also can be used as biocatalytic inks for the generation of metallic nanowires, and thus, bioelectronic devices.

The self-assembly behavior of another class of biomolecular recognition elements is described in Chapter 5. There, Thomas H. LaBean, Kurt V. Gothelf, and John H. Reif summarize the current state-of-the-art of self-assembling DNA nanostructures for patterned assembly of (macro)molecules and nanoparticles. This field of research, which was initially covered in the previous volume of Nanobiotechnology, has evolved significantly within the past three years. A large number of groups are actively conducting research on such DNA-based nanostructures. Although it is not yet clear whether commercially relevant applications of DNA scaffolds will ever be realized, the basic exploration of design principles based on the predictable Watson-Crick interaction of oligonucleotides opens up long term perspectives in studying novel nanoelectronic structures, sensing mechanisms, and materials research.

The increasing importance of nanostructures in analytical applications is reflected in the seven chapters of section II (Chapters 7–13). Developments of nanoparticle-based technologies are described in the first three chapters. As shown by Joseph Wang, the large number of inorganic ions incorporated within nanoparticles can be employed for signal amplification by electrochemical means. This approach offers unique opportunities for electronic transduction of biomolecular interactions, and thus, for measuring protein and nucleic acid analytes (Chapter 7). The peculiar optical properties of semiconductor nanoparticles are also used
for bioanalytical purposes. Hedi Mattoussi and colleagues describe in their contribution the latest developments in this area (Chapter 8). This quantum dot bio-labeling is rapidly moving towards sophisticated applications in cell and tissue imaging as well as in FRET-based immuno-assays, thereby posing great demands on the chemical and structural integrity of the hybrid probes. A more fundamental approach combining nanoparticle technologies and spectroscopy is described in Chapter 9 by Richard P. Van Duyne and colleagues. The localized surface plasmon resonance, occurring in optically coupled nanoparticles, coupled with the size, shape, material and local dielectric environment dependence of the nanostructures, forms the basis for a novel class of biosensors.

While the above mentioned chapters have the “bottom-up” assembly of functional nanostructures in common, the following four chapters of section 2 take advantage of micro- and nanosized probe structures fabricated by conventional “top-down” methodologies. The developments of micromechanical cantilever array sensors for bioanalytical assays are described by Hans Peter Lang, Martin Hegner, and Christoph Gerber in Chapter 10. The cantilever arrays respond mechanically to changes in external parameters, like temperature or molecule adsorption, and thus, can be used to monitor binding events and chemical reactions occurring at the sensors’ surfaces. In Chapter 12, James R. Heath reviews work on nanotube-based sensors, which enable the label-free detection of biomarkers for cancer and other diseases. It is pointed out here that the establishment of viable carbon nanotube or semiconductor nanowire devices for routine diagnostics will require a high-throughput fabrication method with an extraordinary high level of integration of nanoelectronics, microfluidics, chemistry, and biology.

Chapter 11, written by Harald Fuchs and colleagues, reports on uses for shear force-controlled scanning ion conductance microscopy. By using a local probe that is sensitive to ion conductance in an electrolyte solution, gentle scanning of delicate biological surfaces, allows one to obtain well resolved images of fine surface structures, such as of membrane proteins on living cells. In Chapter 13, Chad Mirkin and colleagues report on the preparation of arrays of nanoscale features of biomolecular compounds by using dip-pen nanolithography. Arrays with features on the nanometer length scale not only open up the opportunity to study many biological structures at the single particle level, but they also allow one to contemplate the creation of a combinatorial library, for instance, a complex protein array, underneath a single cell. This would open new possibilities for studying important fundamental biological processes, such as cell-surface recognition, adhesion, differentiation, growth, proliferation, and apoptosis.

Section III (Chapters 14–19) of this volume concerns the use of nanostructures in medicinal applications. The six chapters focus on three major topics: the development of nanoparticle-based drug delivery systems, the use of nanoparticles for imaging, and the design of scaffolds for tissue engineering. Chapter 14, written by Rudy Juliano, gives an introductory overview on biological barriers to nanocarrier-mediated delivery of therapeutic and imaging agents. This chapter also provides a brief assessment of the toxicology of nanomaterials, a subject which has currently initiated widespread discussion because it is anticipated that nano(bio)-
technology will be a key aspect of the future economy. With respect to the development of suitable carrier systems, Larken E. Euliss, Julie A. DuPont, and Joseph M. DeSimone in Chapter 15 summarize work on the development of biocompatible organic nanoparticles, in particular, by means of top-down fabrication techniques, so called lithographic imprinting, adapted from the electronics industry. This method enables the inexpensive fabrication of monodisperse particles of various size and shape from a large variety of matrix materials, which have great potential as functionalized carriers for applications in nanomedicine. An alternative class of particles is described in Chapter 16, where Thommey P. Thomas and colleagues report on poly(amidoamine) dendrimer-based multifunctional nanoparticles as a tumor targeting platform. The biocompatible dendrimer macromolecules act as carriers of molecules for delivery into tumor cells and can achieve increased drug effectiveness at significantly lower toxicity as compared to the free drug.

With respect to clinical imaging techniques, Young-wook Jun, Jae-Hyun Lee, and Jinwoo Cheon review current work on the development of magnetic nanoparticle-based contrast agents for molecular magnetic resonance imaging in Chapter 17. This research is aimed towards advances in cancer diagnosis because nanoparticle contrast agents promise in vivo diagnosis of early staged cancer with sub-millimeter dimension, and might help to unravel fundamental biological processes, such as in vivo pathways of cell evolution, cell differentiations, and cell-to-cell interactions. A different class of nanoparticles is described in Chapter 19 by Samuel A. Wickline and colleagues. They have developed nanoparticles comprised of perfluorocarbon materials which are biologically and metabolically inert, chemically stable, and non-toxic. These nanoparticles have been employed for molecular imaging with MRI and targeted drug delivery.

Chapter 18 of this section, written by Robert L. Langer and colleagues reviews methodologies for generating two- and three-dimensional scaffold architectures for tissue engineering. The authors analyze the use of micro- and nanoscale engineering techniques for controlling and studying cell-cell, cell-substrate and cell-soluble factor interactions as well as for fabricating organs with controlled architecture and resolution.

Section IV of this volume is devoted to one of the most innovative topics of Nanobiotechnology which concerns the fabrication of hybrid devices using organic and inorganic structures equipped with parts of Nature’s biomolecular machinery. To facilitate an introduction to natural molecular nanomotors, Manfred Schliwa describes in Chapter 20 how these fascinating molecular machines are built from amino acids and how they convert chemical energy into mechanical motion. In Chapter 21, Carlo D. Montemagno and colleagues summarize current approaches to fabricate biologically inspired hybrid nanodevices. In particular, two lines of work are shown, protein-based mechanical devices and cellular power generation devices, which both have in common the theme of combining biological molecules with synthetic host structures.

Similar to the first volume, the purpose of Nanobiotechnology II – More Concepts and Applications is to provide both a broad survey of the field as well as instruction and inspiration to scientists at all levels from novices to those intimately engaged
in this new and exciting field of research. To this end, the current state-of-the-art of the above described topics has been accumulated by international renowned experts in their fields. Each of the chapters consists of three sections, (i) an overview which gives a comprehensive but still condensed survey on the specific topic, (ii) a methods section which points the reader to the most important techniques relevant for the specific topic discussed, and (iii) an outlook discussing academic and commercial applications as well as experimental challenges to be solved.

We are most grateful to the authors for providing this collection of high quality manuscripts. We also would like to thank Dr. Sabine Sturm and the production team of Wiley-VCH for continuous and dedicated help during the production of this book.

Evanston and Dortmund, November 2006

Chad A. Mirkin

Christof M. Niemeyer
List of Contributors

Boris Anczykowski
nanoAnalytics GmbH
Heisenbergstr. 11
48149 Münster
Germany

Rochelle R. Arvizó
Department of Chemistry
University of Massachusetts
710 North Pleasant St.
Amherst, MA 01003
USA

James R. Baker, Jr.
Michigan Nanotechnology
Institute for Medicine and
Biological Sciences
University of Michigan
Rm 9220C, MSRB III
Ann Arbor, MI 48109
USA

Ronan Baron
Institute of Chemistry
The Hebrew University of
Jerusalem
Jerusalem 91904
Israel

Matthias Böcker
Center for Nanotechnology (CeNTech)
and Institute of Physics
University of Münster
Heisenbergstr. 11
48149 Münster
Germany

Shelton D. Caruthers
Department of Medicine and
Biomedical Engineering
Washington University School of
Medicine
4320 Forest Park Ave.
St. Louis, MO 63108
USA

Jinwoo Cheon
Department of Chemistry and Nano-
Medical National Core Research
Center
Yonsei University
134 Sinchon-dong
Seodaemun-gu
120-749 Seoul
South Korea

Aaron R. Clapp
Division of Optical Sciences
US Naval Research Laboratory
Washington, DC 20375-5320
USA
List of Contributors

Mrunmoy De
Department of Chemistry
University of Massachusetts
710 North Pleasant St.
Amherst, MA 01003
USA

Joseph M. DeSimone
Department of Chemistry
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599
USA

Julie A. DuPont
Department of Chemistry
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599
USA

Erik Dujardin
NanoSciences Group
CEMES, CNRS UPR 8011
BP 94347
29 rue Jeanne Marvig
31055 Toulouse Cedex 4
France

Eric Dy
Department of Bioengineering
University of California, Los Angeles
420 Westwood Plaza
Los Angeles, CA 90095-1600
USA

Larken E. Euliss
Department of Chemistry
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599
USA

Harald Fuchs
Center for Nanotechnology (CeNTech)
and Institute of Physics
University of Münster
Heisenbergstr. 11
48149 Münster
Germany

Christoph Gerber
Institute of Physics
University of Basel
Klingelbergstrasse 82
4056 Basel
Switzerland

Mary S. Gin
Department of Chemistry
University of Illinois at Urbana-Champaign
600 S. Mathews Ave.
Urbana, IL 61801
USA

Charles A. Goessmann
Department of Chemistry
University of Massachusetts
710 North Pleasant St.
Amherst, MA 01003
USA

Kurt V. Gothelf
Department of Chemistry
Aarhus University
Langelandsgade 140
8000 Aarhus C
Denmark

W. Paige Hall
Department of Chemistry
Northwestern University
2145 Sheridan Road
Evanston, IL 60208-3113
USA
James R. Heath
Caltech Chemistry MC 127-72
and the NanoSystems Biology
Cancer Center
1200 East California Blvd.
Pasadena, CA 91125
USA

Martin Hegner
Institute of Physics
University of Basel
Klingelbergstrasse 82
4056 Basel
Switzerland

Rudy Juliano
Department of Pharmacology
School of Medicine
University of North Carolina at
Chapel Hill
Chapel Hill, NC 27599
USA

Young-wook Jun
Department of Chemistry and
Nano-Medical National Core
Research Center
Yonsei University
134 Sinchon-dong
Seodaemun-gu
120-749 Seoul
South Korea

Joseph J. Kakkassery
Department of Chemistry
International Institute for
Nanotechnology
Northwestern University
2145 Sheridan Road
Evanston, IL 60208
USA

Jeffrey M. Karp
Massachusetts Institute of Technology
77 Massachusetts Ave.
Cambridge, MA 02139-4307
USA

Ali Khademhosseini
Massachusetts Institute of Technology
65 Landsdowne St.
Cambridge, MA 02139
USA

Thomas H. LaBean
Departments of Computer Science and
Chemistry
Duke University
Durham, NC 27708
USA

Hans Peter Lang
Institute of Physics
University of Basel
Klingelbergstrasse 82
4056 Basel
Switzerland

Robert Langer
Massachusetts Institute of
Technology
77 Massachusetts Ave.
Cambridge, MA 02139-4307
USA

Gregory M. Lanza
Department of Medicine and
Biomedical Engineering
Washington University School of
Medicine
4320 Forest Park Ave., Campus
Box 8215
St. Louis, MO 63108
USA
List of Contributors

Jae-Hyun Lee
Department of Chemistry and Nano-Medical National Core Research Center
Yonsei University
134 Sinchon-dong
Seodaemun-gu
120-749 Seoul
South Korea

Yibo Ling
Massachusetts Institute of Technology
65 Landsdowne St.
Cambridge, MA 02139
USA

Istvan J. Majoros
Michigan Nanotechnology Institute for Medicine and Biological Sciences
University of Michigan
109 Zina Pitcher Place
Ann Arbor, MI 48109
USA

Stephen Mann
School of Chemistry
University of Bristol
Bristol BS8 1TS
UK

Hedi Mattoussi
Division of Optical Sciences
US Naval Research Laboratory
Washington, DC 20375-5320
USA

Igor L. Medintz
Division of Optical Sciences
US Naval Research Laboratory
Washington, DC 20375-5320
USA

Chad A. Mirkin
Department of Chemistry
International Institute for Nanotechnology
Northwestern University
2145 Sheridan Road
Evanston, IL 60208
USA

Carlo D. Montemagno
Department of Bioengineering
University of California, Los Angeles
420 Westwood Plaza
Los Angeles, CA 90095-1600
USA

Andrzej Myc
Michigan Nanotechnology Institute for Medicine and Biological Sciences
University of Michigan
109 Zina Pitcher Place
Ann Arbor, MI 48109
USA

Christof Niemeyer
Chair of Biological and Chemical Microstructuring
Department of Chemistry
Otto-Hahn-Str. 6
44227 Dortmund
Germany

Jordan Patti
Department of Bioengineering
University of California, Los Angeles
420 Westwood Plaza
Los Angeles, CA 90095-1600
USA

Thomas Pons
Division of Optical Sciences
US Naval Research Laboratory
Washington, DC 20375-5320
USA
John H. Reif
Department of Computer Science
Duke University
Durham, NC 27708
USA

Vincent M. Rotello
Department of Chemistry
University of Massachusetts
710 North Pleasant St.
Amherst, MA 01003
USA

Maxim G. Ryadnov
School of Chemistry
University of Bristol
Cantock’s Close
Bristol BS8 1TS
UK

Khalid Salaita
Department of Chemistry
Northwestern University
2145 Sheridan Road
Evanston, IL 60208
USA

Emily G. Schmidt
Department of Chemistry
University of Illinois at Urbana-Champaign
600 S. Mathews Ave
Urbana, IL 61801
USA

Leif J. Sherry
Department of Chemistry
Northwestern University
2145 Sheridan Road
Evanston, IL 60208-3113
USA

Rameshwer Shukla
Michigan Nanotechnology Institute for Medicine and Biological Sciences
University of Michigan
109 Zina Pitcher Place
Ann Arbor, MI 48109
USA

Pinaki Talukdar
Department of Chemistry
University of Illinois
600 S. Mathews Ave, Box 31-5
Urbana, IL 61801
USA

Thommey P. Thomas
Michigan Nanotechnology Institute for Medicine and Biological Sciences
University of Michigan
109 Zina Pitcher Place
Ann Arbor, MI 48109
USA

Richard P. Van Duyne
Department of Chemistry
Northwestern University
2145 Sheridan Road
Evanston, IL 60208-3113
USA

Manfred Schliwa
Institute for Cell Biology
University of Munich
Schillerstr. 42
80336 Munich
Germany
List of Contributors

Rafael A. Vega
Department of Chemistry and
International Institute for
Nanotechnology
Northwestern University
2145 Sheridan Road
Evanston, IL 60208
USA

Joseph Wang
Biodesign Institute
Center for Bioelectronics and
Biosensors
Box 875801
Arizona State University
Tempe, AZ 85387-5801
USA

David Wendell
Department of Bioengineering
University of California, Los
Angeles
420 Westwood Plaza
Los Angeles, CA 90095-1600
USA

Samuel A. Wickline
Department of Medicine, Physics,
Biomedical Engineering and Cell
Biology & Physiology
Washington University School of
Medicine
4320 Forest Park Ave.
St. Louis, MO 63108
USA

Katherine A. Willets
Department of Chemistry
Northwestern University
2145 Sheridan Road
Evanston, IL 60208-3113
USA

Bilha Willner
Institute of Chemistry
The Hebrew University of Jerusalem
Jerusalem 91904
Israel

Itamar Willner
Institute of Chemistry
The Hebrew University of Jerusalem
Jerusalem 91904
Israel

Patrick M. Winter
Department of Medicine and
Biomedical Engineering
Washington University School of
Medicine
4320 Forest Park Ave.
St. Louis, MO 63108
USA

Derek N. Woolfson
Department of Biochemistry
University of Bristol
Cantock’s Close
Bristol BS8 1TS
UK

Xiaoyu Zhang
Department of Chemistry
Northwestern University
2145 Sheridan Road
Evanston, IL 60208-3113
USA

Jing Zhao
Department of Chemistry
Northwestern University
2145 Sheridan Road
Evanston, IL 60208-3113
USA